Vanishing viscosity limit for an expanding domain in space
We consider variational problems of P. D. E. depending on a small parameter when the limit process implies vanishing of the higher order terms. The perturbation problem is said to be sensitive when the energy space of the limit problem is out of the distribution space, so that the limit problem is out of classical theory of P. D. E. We present here a review of the subject, including abstract convergence theorems and two very different model problems (the second one is presented for the first...
We study solutions of the Gross-Pitaevsky equation and similar equations in space dimensions in a certain scaling limit, with initial data for which the jacobian concentrates around an (oriented) rectifiable dimensional set, say , of finite measure. It is widely conjectured that under these conditions, the jacobian at later times continues to concentrate around some codimension submanifold, say , and that the family of submanifolds evolves by binormal mean curvature flow. We prove...
We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.