Mixed problems for fully nonlinear hyperbolic equations.
We study the unsaturated flow of an incompressible liquid carrying a bacterial population through a porous medium contaminated with some pollutant. The biomass grows feeding on the pollutant and affecting at the same time all the physics of the flow. We formulate a mathematical model in a one-dimensional setting and we prove an existence theorem for it. The so-called fluid media scaling approach, often used in the literature, is discussed and its limitations are pointed out on the basis of a specific...
We consider a mathematical model proposed in [1] for the cristallization of polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. The model includes a constraint on the crystal volume fraction. Essentially, the model is a system of both second order and first order evolutionary partial differential equations with nonlinear terms which are Lipschitz continuous, as in [1], or Hölder continuous, as in [3]. The main novelty here is the...
This work is concerned with the inverse problem of determining initial value of the Cauchy problem for a nonlinear diffusion process with an additional condition on free boundary. Considering the flow of water through a homogeneous isotropic rigid porous medium, we have such desire: for every given positive constants and , to decide the initial value such that the solution satisfies , where . In this paper, we first establish a priori estimate and a more precise Poincaré type inequality...