Identifiabilité d'un coefficient variable en espace dans une équation parabolique
We consider mixed problems for infinite systems of first order partial functional differential equations. An infinite number of deviating functions is permitted, and the delay of an argument may also depend on the spatial variable. A theorem on the existence of a solution and its continuous dependence upon initial boundary data is proved. The method of successive approximations is used in the existence proof. Infinite differential systems with deviated arguments and differential integral systems...
We analyse the influence of diffusion and space distribution of cells in a simple model of interactions between an activated immune system and malignant gliomas, among which the most aggressive one is GBM Glioblastoma Multiforme. It turns out that diffusion cannot affect stability of spatially homogeneous steady states. This suggests that there are two possible outcomes-the solution is either attracted by the positive steady state or by the semitrivial one. The semitrivial steady state describes...
We construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier–Lebesgue space with and scaling like , for small . We also show the invariance of this measure.