Existence and asymptotic behavior of boundary blow-up solutions for weighted -Laplacian equations with exponential nonlinearities.
We consider the existence, both locally and globally in time, the decay and the blow up of the solution for the extensible beam equation with nonlinear damping and source terms. We prove the existence of the solution by Banach contraction mapping principle. The decay estimates of the solution are proved by using Nakao’s inequality. Moreover, under suitable conditions on the initial datum, we prove that the solution blow up in finite time.
This paper deals with existence of finite-time blow-up solutions to a degenerate parabolic–elliptic Keller–Segel system with logistic source. Recently, finite-time blow-up was established for a degenerate Jäger–Luckhaus system with logistic source. However, blow-up solutions of the aforementioned system have not been obtained. The purpose of this paper is to construct blow-up solutions of a degenerate Keller–Segel system with logistic source.
A simple proof of the existence of solutions for the two-dimensional Keller-Segel model with measures with all the atoms less than 8π as the initial data is given. This result was obtained by Senba and Suzuki (2002) and Bedrossian and Masmoudi (2014) using different arguments. Moreover, we show a uniform bound for the existence time of solutions as well as an optimal hypercontractivity estimate.