Page 1

Displaying 1 – 6 of 6

Showing per page

Self-improving bounds for the Navier-Stokes equations

Jean-Yves Chemin, Fabrice Planchon (2012)

Bulletin de la Société Mathématique de France

We consider regular solutions to the Navier-Stokes equation and provide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative regularity Besov scale, with regularity arbitrarly close to - 1 . Our results rely on turning a priori bounds for the solution in negative Besov spaces into bounds in the positive regularity scale.

Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems

Pierre Raphaël, Igor Rodnianski (2008/2009)

Séminaire Équations aux dérivées partielles

This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the 𝕊 2 target in all homotopy classes and for the equivariant critical S O ( 4 ) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.

Currently displaying 1 – 6 of 6

Page 1