Blow up, global existence and growth rate estimates in nonlinear parabolic systems
We prove Fujita-type global existence and nonexistence theorems for a system of m equations (m > 1) with different diffusion coefficients, i.e. with nonnegative, bounded, continuous initial values and , , , . For solutions which blow up at , we derive the following bounds on the blow up rate: with C > 0 and defined in terms of .