Comparison principle and Liouville type results for singular fully nonlinear operators
In questa Nota gli autori presentano alcuni risultati riguardanti il comportamento alla frontiera di domini non cilindrici delle soluzioni positive dell'equazione del calore. Una conseguenza è che due soluzioni positive qualunque, che si annullano su una parte della frontiera laterale, tendono a zero con lo stesso ordine.
In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.
The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions.