Page 1

Displaying 1 – 16 of 16

Showing per page

Estimates of weak solutions to nondiagonal quasilinear parabolic systems

Dmitry Portnyagin (2005)

Annales Polonici Mathematici

L -estimates of weak solutions are established for a quasilinear non-diagonal parabolic system with a special structure whose leading terms are modelled by p-Laplacians. A generalization of the weak maximum principle to systems of equations is employed.

Evolutionary Games in Space

N. Kronik, Y. Cohen (2009)

Mathematical Modelling of Natural Phenomena

The G-function formalism has been widely used in the context of evolutionary games for identifying evolutionarily stable strategies (ESS). This formalism was developed for and applied to point processes. Here, we examine the G-function formalism in the settings of spatial evolutionary games and strategy dynamics, based on reaction-diffusion models. We start by extending the point process maximum principle to reaction-diffusion models with homogeneous, locally stable surfaces. We then develop...

Existence of Waves for a Nonlocal Reaction-Diffusion Equation

I. Demin, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

In this work we study a nonlocal reaction-diffusion equation arising in population dynamics. The integral term in the nonlinearity describes nonlocal stimulation of reproduction. We prove existence of travelling wave solutions by the Leray-Schauder method using topological degree for Fredholm and proper operators and special a priori estimates of solutions in weighted Hölder spaces.

Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi, Laurent Desvillettes, Giampiero Spiga (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.

Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi, Laurent Desvillettes, Giampiero Spiga (2008)

ESAIM: Mathematical Modelling and Numerical Analysis


We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.


Currently displaying 1 – 16 of 16

Page 1