On analytic solutions to the generalized Cauchy problem with data on three surfaces for a quasilinear system.
We give a new characterisation of Borel summability of formal power series solutions to the n-dimensional heat equation in terms of holomorphic properties of the integral means of the Cauchy data. We also derive the Borel sum for the summable formal solutions.
Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi’s formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford analysis.
Presented herein is a method of constructing solutions of semilinear dissipative evolution equations in bounded domains. For small initial data this approach permits one to represent the solution in the form of an eigenfunction expansion series and to calculate the higher-order long-time asymptotics. It is applied to the spatially 3D Kuramoto-Sivashinsky equation in the unit ball B in the linearly stable case. A global-in-time mild solution is constructed in the space , s < 2, and the uniqueness...
On se propose d’étudier des équations aux dérivées partielles non linéaires du type de Fuchs au sens de Baouendi-Goulaouic ([1] et [2]) dans des espaces de fonctions suffisamment différentiables par rapport à la variable fuchsienne et dans des espaces de Gevrey par rapport aux autres variables. Les méthodes utilisées reposent sur le formalisme des séries formelles Gevrey développé dans [13] et adapté aux équations du type de Fuchs dans [6] et [7]. On obtient ainsi des théorèmes qui généralisent...