Displaying 21 – 40 of 78

Showing per page

On hyperbolic partial differential equations in Banach spaces

Bogdan Rzepecki (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Viene dimostrata l'esistenza di soluzioni del problema di Darboux per l'equazione iperbolica z x y ′′ = f ( x , y , z , Z x , z y ) sul planiquarto x 0 , y 0 . Qui, f è una funzione continua, con valori in uno spazio Banach che soddisfano alcune condizioni di regolarità espresse in termini della misura di non-compattezza α .

On representations of real analytic functions by monogenic functions

Hongfen Yuan (2019)

Czechoslovak Mathematical Journal

Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi’s formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford analysis.

On similarity solution of a boundary layer problem for power-law fluids

Gabriella Bognár (2012)

Mathematica Bohemica

The boundary layer equations for the non-Newtonian power law fluid are examined under the classical conditions of uniform flow past a semi infinite flat plate. We investigate the behavior of the similarity solution and employing the Crocco-like transformation we establish the power series representation of the solution near the plate.

On splitting up singularities of fundamental solutions to elliptic equations in ℂ2

T. Savina (2007)

Open Mathematics

It is known that the fundamental solution to an elliptic differential equation with analytic coefficients exists, is determined up to the kernel of the differential operator, and has singularities on characteristics of the equation in ℂ2. In this paper we construct a representation of fundamental solution as a sum of functions, each of those has singularity on a single characteristic.

On the approximation of real continuous functions by series of solutions of a single system of partial differential equations

Carsten Elsner (2006)

Colloquium Mathematicae

We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function f : s can be approximated with arbitrary accuracy by an infinite sum r = 1 H r ( x , . . . , x s ) C ( s ) of analytic functions H r , each solving the same system of universal partial differential equations, namely P ( x σ ; H r , H r / x σ , . . . , H r / x σ ) = 0 (σ = 1,..., s).

On the asymptotics of solutions to the second initial boundary value problem for Schrödinger systems in domains with conical points

Nguyen Manh Hung, Hoang Viet Long, Nguyen Thi Kim Son (2013)

Applications of Mathematics

In this paper, for the second initial boundary value problem for Schrödinger systems, we obtain a performance of generalized solutions in a neighborhood of conical points on the boundary of the base of infinite cylinders. The main result are asymptotic formulas for generalized solutions in case the associated spectrum problem has more than one eigenvalue in the strip considered.

Currently displaying 21 – 40 of 78