On the asymptotics of the spectrum of a thin plate problem of elasticity.
In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey’s Method of Transport (MoT) (respectively the second author’s ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the gas kinetic derivation...
In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey's Method of Transport (MoT) (respectively the second author's ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the...
This paper is concerned with the controllability of linear and nonlinear fractional dynamical systems in finite dimensional spaces. Sufficient conditions for controllability are obtained using Schauder's fixed point theorem and the controllability Grammian matrix which is defined by the Mittag-Leffler matrix function. Examples are given to illustrate the effectiveness of the theory.
Presented herein is a method of constructing solutions of semilinear dissipative evolution equations in bounded domains. For small initial data this approach permits one to represent the solution in the form of an eigenfunction expansion series and to calculate the higher-order long-time asymptotics. It is applied to the spatially 3D Kuramoto-Sivashinsky equation in the unit ball B in the linearly stable case. A global-in-time mild solution is constructed in the space , s < 2, and the uniqueness...
Reaction-diffusion equations with degenerate nonlinear diffusion are in widespread use as models of biological phenomena. This paper begins with a survey of applications to ecology, cell biology and bacterial colony patterns. The author then reviews mathematical results on the existence of travelling wave front solutions of these equations, and their generation from given initial data. A detailed study is then presented of the form of smooth-front...
We consider a nonnegative superbiharmonic function satisfying some growth condition near the boundary of the unit disk in the complex plane. We shall find an integral representation formula for in terms of the biharmonic Green function and a multiple of the Poisson kernel. This generalizes a Riesz-type formula already found by the author for superbihamonic functions satisfying the condition in the unit disk. As an application we shall see that the polynomials are dense in weighted Bergman...
We consider the first initial-boundary value problem for the 2-D Kuramoto-Sivashinsky equation in a unit disk with homogeneous boundary conditions, periodicity conditions in the angle, and small initial data. Apart from proving the existence and uniqueness of a global in time solution, we construct it in the form of a series in a small parameter present in the initial conditions. In the stable case we also obtain the uniform in space long-time asymptotic expansion of the constructed solution and...
In this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L2 nodal norm and L∞ maximum nodal norm to evaluate the accuracy...