Second-order boundary estimates for solutions to singular elliptic equations in borderline cases.
Two approaches are proposed to modelling of topological variations in elastic solids. The first approach is based on the theory of selfadjoint extensions of differential operators. In the second approach function spaces with separated asymptotics and point asymptotic conditions are introduced, and a variational formulation is established. For both approaches, accuracy estimates are derived.
We investigate the two-component Nernst-Planck-Debye system by a numerical study of self-similar solutions using the Runge-Kutta method of order four and comparing the results obtained with the solutions of a one-component system. Properties of the solutions indicated by numerical simulations are proved and an existence result is established based on comparison arguments for singular ordinary differential equations.
We consider a reaction-diffusion-convection equation on the halfline (0,1) with the zero Dirichlet boundary condition at . We find a positive selfsimilar solution which blows up in a finite time at while remains bounded for .
A number of explicit solutions for the heat equation with a polynomial non-linearity and for the Fisher equation is presented. An extended class of non-linear heat equations admitting solitary wave solutions is described. The generalization of the Fisher equation is proposed whose solutions propagate with arbitrary ad hoc fixed velocity.
We review some recent results concerning Gibbs measures for nonlinear Schrödinger equations (NLS), with implications for the theory of the NLS, including stability and typicality of solitary wave structures. In particular, we discuss the Gibbs measures of the discrete NLS in three dimensions, where there is a striking phase transition to soliton-like behavior.