Previous Page 3

Displaying 41 – 45 of 45

Showing per page

Existence of weak solutions to doubly degenerate diffusion equations

Aleš Matas, Jochen Merker (2012)

Applications of Mathematics

We prove existence of weak solutions to doubly degenerate diffusion equations u ˙ = Δ p u m - 1 + f ( m , p 2 ) by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains Ω n with Dirichlet or Neumann boundary conditions. The function f can be an inhomogeneity or a nonlinearity involving terms of the form f ( u ) or div ( F ( u ) ) . In the appendix, an introduction to weak differentiability...

Exponential convergence for a convexifying equation

Guillaume Carlier, Alfred Galichon (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an evolution equation similar to that introduced by Vese in [Comm. Partial Diff. Eq. 24 (1999) 1573–1591] and whose solution converges in large time to the convex envelope of the initial datum. We give a stochastic control representation for the solution from which we deduce, under quite general assumptions that the convergence in the Lipschitz norm is in fact exponential in time.

Exponential convergence for a convexifying equation

Guillaume Carlier, Alfred Galichon (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an evolution equation similar to that introduced by Vese in [Comm. Partial Diff. Eq. 24 (1999) 1573–1591] and whose solution converges in large time to the convex envelope of the initial datum. We give a stochastic control representation for the solution from which we deduce, under quite general assumptions that the convergence in the Lipschitz norm is in fact exponential in time.

Exponential convergence for a convexifying equation

Guillaume Carlier, Alfred Galichon (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an evolution equation similar to that introduced by Vese in [Comm. Partial Diff. Eq. 24 (1999) 1573–1591] and whose solution converges in large time to the convex envelope of the initial datum. We give a stochastic control representation for the solution from which we deduce, under quite general assumptions that the convergence in the Lipschitz norm is in fact exponential in time.

Currently displaying 41 – 45 of 45

Previous Page 3