Harmonic Measure in Simply Connected Domains
Let be a bounded simply connected domain in the complex plane, . Let be a neighborhood of , let be fixed, and let be a positive weak solution to the Laplace equation in Assume that has...
Let be a bounded simply connected domain in the complex plane, . Let be a neighborhood of , let be fixed, and let be a positive weak solution to the Laplace equation in Assume that has...
We consider viscosity solutions for second order differential-functional equations of parabolic type. Initial value and mixed problems are studied. Comparison theorems for subsolutions, supersolutions and solutions are considered.
We obtain the global weighted Morrey-type regularity of the solution of the regular oblique derivative problem for linear uniformly parabolic operators with VMO coefficients. We show that if the right-hand side of the parabolic equation belongs to certain generalized weighted Morrey space Mp,ϕ(Q, w), than the strong solution belongs to the generalized weighted Sobolev- Morrey space [...] W˙2,1p,φ(Q,ω).
We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called -truncation method, used to obtain the strong convergence of the velocity...
In this paper we consider positive unbounded solutions of second order quasilinear ordinary differential equations. Our objective is to determine the asymptotic forms of unbounded solutions. An application to exterior Dirichlet problems is also given.
In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^{-1}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence...
This work is devoted to the concept of statistical solution of the Navier-Stokes equations, proposed as a rigorous mathematical object to address the fundamental concept of ensemble average used in the study of the conventional theory of fully developed turbulence. Two types of statistical solutions have been proposed in the 1970’s, one by Foias and Prodi and the other one by Vishik and Fursikov. In this article, a new, intermediate type of statistical solution is introduced and studied. This solution...
On considère l’équation de Vlasov-Poisson en dimension 3. On montre des résultats d’existence et d’unicité de solutions faibles de l’équation de Vlasov-Poisson avec densité bornée pour des données initiales ayant strictement moins de six moments dans . La preuve est basée sur une nouvelle approche qui consiste à établir des effets de moments a priori pour des équations de transport avec des termes de force peu réguliers.
We study the 2D magnetohydrodynamic (MHD) equations for a viscous incompressible resistive fluid, a system with the Navier-Stokes equations for the velocity field coupled with a convection-diffusion equation for the magnetic fields, in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality with a large class of non-autonomous external forces. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal...