Page 1

Displaying 1 – 6 of 6

Showing per page

A Bellman approach for two-domains optimal control problems in ℝN

G. Barles, A. Briani, E. Chasseigne (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This article is the starting point of a series of works whose aim is the study of deterministic control problems where the dynamic and the running cost can be completely different in two (or more) complementary domains of the space ℝN. As a consequence, the dynamic and running cost present discontinuities at the boundary of these domains and this is the main difficulty of this type of problems. We address these questions by using a Bellman approach: our aim is to investigate how to define properly...

A general Hamilton-Jacobi framework for non-linear state-constrained control problems

Albert Altarovici, Olivier Bokanowski, Hasnaa Zidani (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with deterministic optimal control problems with state constraints and non-linear dynamics. It is known for such problems that the value function is in general discontinuous and its characterization by means of a Hamilton-Jacobi equation requires some controllability assumptions involving the dynamics and the set of state constraints. Here, we first adopt the viability point of view and look at the value function as its epigraph. Then, we prove that this epigraph can always be described...

A Hamilton-Jacobi approach to junction problems and application to traffic flows

Cyril Imbert, Régis Monneau, Hasnaa Zidani (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the study of a model case of first order Hamilton-Jacobi equations posed on a “junction”, that is to say the union of a finite number of half-lines with a unique common point. The main result is a comparison principle. We also prove existence and stability of solutions. The two challenging difficulties are the singular geometry of the domain and the discontinuity of the Hamiltonian. As far as discontinuous Hamiltonians are concerned, these results seem to be new. They...

Adjoint methods for obstacle problems and weakly coupled systems of PDE

Filippo Cagnetti, Diogo Gomes, Hung Vinh Tran (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The adjoint method, recently introduced by Evans, is used to study obstacle problems, weakly coupled systems, cell problems for weakly coupled systems of Hamilton − Jacobi equations, and weakly coupled systems of obstacle type. In particular, new results about the speed of convergence of some approximation procedures are derived.

Currently displaying 1 – 6 of 6

Page 1