Randwertaufgabe von Hilbert-Typus fur die p-analytischen Funktionen und die Methode der Fourier-Schen Transformation
This paper focuses on the automatic recognition of map projection, its inverse and re-projection. Our analysis leads to the unconstrained optimization solved by the hybrid BFGS nonlinear least squares technique. The objective function is represented by the squared sum of the residuals. For the map re-projection the partial differential equations of the inverse transformation are derived. They can be applied to any map projection. Illustrative examples of the stereographic and globular Nicolosi projections...
We formulate an Hamilton-Jacobi partial differential equationon a dimensional manifold , with assumptions of convexity of and regularity of (locally in a neighborhood of in ); we define the “min solution” , a generalized solution; to this end, we view as a symplectic manifold. The definition of “min solution” is suited to proving regularity results about ; in particular, we prove in the first part that the closure of the set where is not regular may be covered by a countable number...
We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensional manifold M, with assumptions of convexity of H(x, .) and regularity of H (locally in a neighborhood of {H=0} in T*M); we define the “minsol solution” u, a generalized solution; to this end, we view T*M as a symplectic manifold. The definition of “minsol solution” is suited to proving regularity results about u; in particular, we prove in the first part that the closure of the set where...
We discuss the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of the time-dependent Schrödinger equation in quantum molecular dynamics. This method approximates the high-dimensional nuclear wave function by a linear combination of products of functions depending only on a single degree of freedom. The equations of motion, obtained via the Dirac-Frenkel time-dependent variational principle, consist of a coupled system of low-dimensional nonlinear partial differential...
Given a continuous viscosity solution of a Dirichlet-type Hamilton-Jacobi equation, we show that the distance function to the conjugate locus which is associated to this problem is locally semiconcave on its domain. It allows us to provide a simple proof of the fact that the distance function to the cut locus associated to this problem is locally Lipschitz on its domain. This result, which was already an improvement of a previous one by Itoh and Tanaka [Trans. Amer. Math. Soc. 353 (2001) 21–40],...