Displaying 61 – 80 of 119

Showing per page

Remarks on Gårding inequalities for differential operators

Xavier Saint Raymond (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Classical Gårding inequalities such as those of Hörmander, Hörmander-Melin or Fefferman-Phong are proved by pseudo-differential methods which do not allow to keep a good control on the supports of the functions under study nor on the smoothness of the coefficients of the operator. In this paper, we show by very simple calculations that in certain special situations, the results that can be obtained directly are much better than those expected thanks to the general theory.

Solutions indéfiniment différentiables d’un système d’équations aux différences et application aux systèmes d’équations aux dérivées partielles

Yarakamé Souleymane Daniogo (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cette note, nous prouvons l’existence de solutions indéfiniment différentiables d’un système de deux équations aux différences et appliquons la technique utilisée à l’étude des systèmes d’équations linéaires aux dérivées partielles.Dans chaque cas, on montre que les solutions sont les premières composantes des solutions d’un système matriciel que nous étudions.

Some solutions for a class of singular equations

Abdullah Altin, Ayşegül Erençin (2004)

Czechoslovak Mathematical Journal

In this paper we obtain all solutions which depend only on r for a class of partial differential equations of higher order with singular coefficients.

Sul problema pluriarmonico in un campo sferico di 𝐂 n per n 3

Maria Adelaide Sneider (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let Σ be the boundary of the unit ball Ω of 𝐂 n . A set of second order linear partial differential operators, tangential to Σ , is explicitly given in such a way that, for n 3 , the corresponding PDE caractherize the trace of the solution of the pluriharmonic problem (either “in the large” or “local”), relative to Ω .

The existence and uniqueness theorem in Biot's consolidation theory

Alexander Ženíšek (1984)

Aplikace matematiky

Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given.

Currently displaying 61 – 80 of 119