Régularité de moyennes de solutions d'équations aux dérivées partielles
Classical Gårding inequalities such as those of Hörmander, Hörmander-Melin or Fefferman-Phong are proved by pseudo-differential methods which do not allow to keep a good control on the supports of the functions under study nor on the smoothness of the coefficients of the operator. In this paper, we show by very simple calculations that in certain special situations, the results that can be obtained directly are much better than those expected thanks to the general theory.
Dans cette note, nous prouvons l’existence de solutions indéfiniment différentiables d’un système de deux équations aux différences et appliquons la technique utilisée à l’étude des systèmes d’équations linéaires aux dérivées partielles.Dans chaque cas, on montre que les solutions sont les premières composantes des solutions d’un système matriciel que nous étudions.
In this paper we obtain all solutions which depend only on for a class of partial differential equations of higher order with singular coefficients.
Let be the boundary of the unit ball of . A set of second order linear partial differential operators, tangential to , is explicitly given in such a way that, for , the corresponding PDE caractherize the trace of the solution of the pluriharmonic problem (either “in the large” or “local”), relative to .
Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given.