A C2-estimate for solutions of complex Monge-Ampère equations.
Page 1 Next
Friedmar Schulz (1984)
Journal für die reine und angewandte Mathematik
Giovanna Citti (1993)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
We prove a strong comparison principle for the solution of the Levi equation , applying Bony Propagation Principle.
Stefan Ebenfeld (2003)
Banach Center Publications
Pierre-Louis Lions, Jindřich Nečas, Ivan Netuka (1982)
Commentationes Mathematicae Universitatis Carolinae
M. Struwe, A. Ambrosetti (1986)
Manuscripta mathematica
Annalisa Buffa, Yvon Maday, Anthony T. Patera, Christophe Prud’homme, Gabriel Turinici (2012)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we...
Annalisa Buffa, Yvon Maday, Anthony T. Patera, Christophe Prud’homme, Gabriel Turinici (2012)
ESAIM: Mathematical Modelling and Numerical Analysis
The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we...
Annalisa Buffa, Yvon Maday, Anthony T. Patera, Christophe Prud’homme, Gabriel Turinici (2012)
ESAIM: Mathematical Modelling and Numerical Analysis
The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we...
Mariano Giaquinta, Guiseppe Modica (1979)
Manuscripta mathematica
Ph. Laurençot, Ch. Walker (2008)
Mathematical Modelling of Natural Phenomena
Proteus mirabilis are bacteria that make strikingly regular spatial-temporal patterns on agar surfaces. In this paper we investigate a mathematical model that has been shown to display these structures when solved numerically. The model consists of an ordinary differential equation coupled with a partial differential equation involving a first-order hyperbolic aging term together with nonlinear degenerate diffusion. The system is shown to admit global weak solutions.
Dimitrios A. Kandilakis (1996)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
In this paper we consider a second order differential equation involving the difference of two monotone operators. Using an auxiliary equation, a priori bounds and a compactness argument we show that the differential equation has a local solution. An example is also presented in detail.
Joachim Naumann (1974)
Aplikace matematiky
Hana Petzeltová (1983)
Czechoslovak Mathematical Journal
Krystyna Twardowska (1993)
Alexandru Buium, Santiago R. Simanca (2009)
Annales de l’institut Fourier
We survey recent work on arithmetic analogues of ordinary and partial differential equations.
Karl Wilhelm Bauer (1978)
Monatshefte für Mathematik
Jolanta Przybycin (1992)
Annales Polonici Mathematici
This paper was inspired by the works of P. H. Rabinowitz. We study nonlinear eigenvalue problems for some fourth order elliptic partial differential equations with nonlinear perturbation of Rabinowitz type. We show the existence of an unbounded continuum of nontrivial positive solutions bifurcating from (μ₁,0), where μ₁ is the first eigenvalue of the linearization about 0 of the considered problem. We also prove the related theorem for bifurcation from infinity. The results obtained are similar...
Maurice Gaultier (1973)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Jean-Michel Bony (1979)
Journées équations aux dérivées partielles
Alain Piriou (1988)
Annales de l'institut Fourier
On considère une solution , assez régulière, d’une équation aux dérivées partielles non linéaire. Si est conormale par rapport a une hypersurface simplement caractéristique pour l’équation linéarisée, on étudie l’équation de transport satisfaite par son symbole principal, et on en déduit la propagation de la propriété “ est conormale classique”.
Page 1 Next