Displaying 41 – 60 of 84

Showing per page

Opérateurs de Fuchs non linéaires

Patrice Pongérard, Claude Wagschal (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

On se propose d’étudier des équations aux dérivées partielles non linéaires du type de Fuchs au sens de Baouendi-Goulaouic ([1] et [2]) dans des espaces de fonctions suffisamment différentiables par rapport à la variable fuchsienne et dans des espaces de Gevrey par rapport aux autres variables. Les méthodes utilisées reposent sur le formalisme des séries formelles Gevrey développé dans [13] et adapté aux équations du type de Fuchs dans [6] et [7]. On obtient ainsi des théorèmes qui généralisent...

Porous medium equation and fast diffusion equation as gradient systems

Samuel Littig, Jürgen Voigt (2015)

Czechoslovak Mathematical Journal

We show that the Porous Medium Equation and the Fast Diffusion Equation, u ˙ - Δ u m = f , with m ( 0 , ) , can be modeled as a gradient system in the Hilbert space H - 1 ( Ω ) , and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets Ω n and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.

Propagation of uniform Gevrey regularity of solutions to evolution equations

Todor Gramchev, Ya-Guang Wang (2003)

Banach Center Publications

We investigate the propagation of the uniform spatial Gevrey G σ , σ ≥ 1, regularity for t → +∞ of solutions to evolution equations like generalizations of the Euler equation and the semilinear Schrödinger equation with polynomial nonlinearities. The proofs are based on direct iterative arguments and nonlinear Gevrey estimates.

Currently displaying 41 – 60 of 84