Displaying 21 – 40 of 89

Showing per page

Expansions and eigenfrequencies for damped wave equations

Michael Hitrik (2001)

Journées équations aux dérivées partielles

We study eigenfrequencies and propagator expansions for damped wave equations on compact manifolds. In the strongly damped case, the propagator is shown to admit an expansion in terms of the finitely many eigenmodes near the real axis, with an error exponentially decaying in time. In the presence of an elliptic closed geodesic not meeting the support of the damping coefficient, we show that there exists a sequence of eigenfrequencies converging rapidly to the real axis. In the case of Zoll manifolds,...

Instability of oscillations in cable-stayed bridges

Josef Malík (2005)

Applications of Mathematics

In this paper the stability of two basic types of cable stayed bridges, suspended by one or two rows of cables, is studied. Two linearized models of the center span describing the vertical and torsional oscillations are investigated. After the analysis of these models, a stability criterion is formulated. The criterion expresses a relation between the eigenvalues of the vertical and torsional oscillations of the center span. The continuous dependence of the eigenvalues on some data is studied and...

L'equazione Δ 2 u + a 10 ( x , y ) u x + a 01 ( x , y ) u y + a 00 ( x , y ) u = F ( x , y ) . Teoremi di completezza

Alberto Cialdea (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In ipotesi molto generali si dimostrano teoremi di completezza nel senso di Picone per l'equazione (1). Come corollario si ottengono teoremi del tipo Runge.

Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations

Qin Li, Qun Lin, Hehu Xie (2013)

Applications of Mathematics

The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, Q 1 rot , E Q 1 rot and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to...

On an oblique derivative problem involving an indefinite weight

M. Faierman (1994)

Archivum Mathematicum

In this paper we derive results concerning the angular distrubition of the eigenvalues and the completeness of the principal vectors in certain function spaces for an oblique derivative problem involving an indefinite weight function for a second order elliptic operator defined in a bounded region.

Currently displaying 21 – 40 of 89