Previous Page 3

Displaying 41 – 43 of 43

Showing per page

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cette article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Symmetry breaking in the minimization of the first eigenvalue for the composite clamped punctured disk

Claudia Anedda, Fabrizio Cuccu (2015)

Applicationes Mathematicae

Let D₀=x∈ ℝ²: 0<|x|<1 be the unit punctured disk. We consider the first eigenvalue λ₁(ρ ) of the problem Δ² u =λ ρ u in D₀ with Dirichlet boundary condition, where ρ is an arbitrary function that takes only two given values 0 < α < β and is subject to the constraint D ρ d x = α γ + β ( | D | - γ ) for a fixed 0 < γ < |D₀|. We will be concerned with the minimization problem ρ ↦ λ₁(ρ). We show that, under suitable conditions on α, β and γ, the minimizer does not inherit the radial symmetry of the domain.

Currently displaying 41 – 43 of 43

Previous Page 3