Page 1

Displaying 1 – 11 of 11

Showing per page

Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models

J. Clairambault, S. Gaubert, Th. Lepoutre (2009)

Mathematical Modelling of Natural Phenomena

We study the growth rate of a cell population that follows an age-structured PDE with time-periodic coefficients. Our motivation comes from the comparison between experimental tumor growth curves in mice endowed with intact or disrupted circadian clocks, known to exert their influence on the cell division cycle. We compare the growth rate of the model controlled by a time-periodic control on its coefficients with the growth rate of stationary models of the same nature, but with averaged coefficients....

Convergence of approximation methods for eigenvalue problem for two forms

Teresa Regińska (1984)

Aplikace matematiky

The paper concerns an approximation of an eigenvalue problem for two forms on a Hilbert space X . We investigate some approximation methods generated by sequences of forms a n and b n defined on a dense subspace of X . The proof of convergence of the methods is based on the theory of the external approximation of eigenvalue problems. The general results are applied to Aronszajn’s method.

Convex shape optimization for the least biharmonic Steklov eigenvalue

Pedro Ricardo Simão Antunes, Filippo Gazzola (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The least Steklov eigenvalue d1 for the biharmonic operator in bounded domains gives a bound for the positivity preserving property for the hinged plate problem, appears as a norm of a suitable trace operator, and gives the optimal constant to estimate the L2-norm of harmonic functions. These applications suggest to address the problem of minimizing d1 in suitable classes of domains. We survey the existing results and conjectures about this topic; in particular, the existence of a convex domain...

Curved thin domains and parabolic equations

M. Prizzi, M. Rinaldi, K. P. Rybakowski (2002)

Studia Mathematica

Consider the family uₜ = Δu + G(u), t > 0, x Ω ε , ν ε u = 0 , t > 0, x Ω ε , ( E ε ) of semilinear Neumann boundary value problems, where, for ε > 0 small, the set Ω ε is a thin domain in l , possibly with holes, which collapses, as ε → 0⁺, onto a (curved) k-dimensional submanifold of l . If G is dissipative, then equation ( E ε ) has a global attractor ε . We identify a “limit” equation for the family ( E ε ) , prove convergence of trajectories and establish an upper semicontinuity result for the family ε as ε → 0⁺.

Currently displaying 1 – 11 of 11

Page 1