Stability of eigenvalues and eigenvectors of variational inequalities
Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form It is shown, under certain structure assumptions on the random map , that the sequence of th eigenpairs converges to the th eigenpair of the homogenized eigenvalue problem For the case of -Laplacian type maps we characterize explicitly.