Non résonance près de la première valeur propie d'un système elliptique quasilinéaire de type potentiel.
Page 1
Abderrahmane. El Hachimi, François De Thélin (1995)
Publicacions Matemàtiques
Zuo Dong Yang, Junli Yuan (2007)
Commentationes Mathematicae Universitatis Carolinae
We obtain a non-existence result for a class of quasi-linear eigenvalue problems when a parameter is small. By using Pohozaev identity and some comparison arguments, non-existence theorems are established for quasi-linear eigenvalue problems under supercritical growth condition.
K. Schmitt, H.O. Peitgen, D. Saupe (1981)
Journal für die reine und angewandte Mathematik
C.J. Amick, J.F. Toland (1983)
Mathematische Annalen
Pavel Drábek, Zakaria Moudan, Abdelfettah Touzani (1997)
Commentationes Mathematicae Universitatis Carolinae
The nonlinear eigenvalue problem for p-Laplacian is considered. We assume that and that is indefinite weight function. The existence and -regularity of the weak solution is proved.
Tosiya Miyasita, Takashi Suzuki (2004)
Banach Center Publications
The non-local Gel’fand problem, with Dirichlet boundary condition, is studied on an n-dimensional bounded domain Ω. If it is star-shaped, then we have an upper bound of λ for the existence of the solution. We also have infinitely many bendings in λ of the connected component of the solution set in λ,v if Ω is a ball and 3 ≤ n ≤ 9.
Amaral, Luís (1993)
Portugaliae mathematica
B. Franchi, N. Kutev, S. Polidoro (1993)
Manuscripta mathematica
Eric Cancès, Rachida Chakir, Yvon Maday (2012)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...
Eric Cancès, Rachida Chakir, Yvon Maday (2011)
ESAIM: Mathematical Modelling and Numerical Analysis
In this article, we provide a priori error estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...
Page 1