Page 1

Displaying 1 – 2 of 2

Showing per page

A priori error estimates for reduced order models in finance

Ekkehard W. Sachs, Matthias Schu (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Mathematical models for option pricing often result in partial differential equations. Recent enhancements are models driven by Lévy processes, which lead to a partial differential equation with an additional integral term. In the context of model calibration, these partial integro differential equations need to be solved quite frequently. To reduce the computational cost the implementation of a reduced order model has shown to be very successful numerically. In this paper we give a priori error...

A variational analysis of a gauged nonlinear Schrödinger equation

Alessio Pomponio, David Ruiz (2015)

Journal of the European Mathematical Society

This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem: - Δ u ( x ) + ω + h 2 ( | x | ) | x | 2 + | x | + h ( s ) s u 2 ( s ) d s u ( x ) = | u ( x ) | p - 1 u ( x ) , where h ( r ) = 1 2 0 r s u 2 ( s ) d s . This problem is the Euler-Lagrange equation of a certain energy functional. In this paper the study of the global behavior of such functional is completed. We show that for p ( 1 , 3 ) , the functional may be bounded from below or not, depending on ω . Quite surprisingly, the threshold value for ω is explicit. From...

Currently displaying 1 – 2 of 2

Page 1