Page 1

Displaying 1 – 6 of 6

Showing per page

On Kirchhoff type problems involving critical and singular nonlinearities

Chun-Yu Lei, Chang-Mu Chu, Hong-Min Suo, Chun-Lei Tang (2015)

Annales Polonici Mathematici

In this paper, we are interested in multiple positive solutions for the Kirchhoff type problem ⎧ - ( a + b Ω | u | ² d x ) Δ u = u + λ u q - 1 / | x | β in Ω ⎨ ⎩ u = 0 on ∂Ω, where Ω ⊂ ℝ³ is a smooth bounded domain, 0∈Ω, 1 < q < 2, λ is a positive parameter and β satisfies some inequalities. We obtain the existence of a positive ground state solution and multiple positive solutions via the Nehari manifold method.

On Spectrum and Riesz basis property for one-dimensional wave equation with Boltzmann damping∗

Bao-Zhu Guo, Guo-Dong Zhang (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the one-dimensional wave equation with Boltzmann damping. Two different Boltzmann integrals that represent the memory of materials are considered. The spectral properties for both cases are thoroughly analyzed. It is found that when the memory of system is counted from the infinity, the spectrum of system contains a left half complex plane, which is sharp contrast to the most results in elastic vibration systems that the vibrating dynamics can be considered from the vibration...

On Spectrum and Riesz basis property for one-dimensional wave equation with Boltzmann damping∗

Bao-Zhu Guo, Guo-Dong Zhang (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the one-dimensional wave equation with Boltzmann damping. Two different Boltzmann integrals that represent the memory of materials are considered. The spectral properties for both cases are thoroughly analyzed. It is found that when the memory of system is counted from the infinity, the spectrum of system contains a left half complex plane, which is sharp contrast to the most results in elastic vibration systems that the vibrating dynamics can be considered from the vibration...

On the age-dependent predator-prey model

Antoni Leon Dawidowicz, Anna Poskrobko, Jerzy Leszek Zalasiński (2011)

Applicationes Mathematicae

The paper deals with the description of a model which is the synthesis of two classical models, the Lotka-Volterra and McKendrick-von Foerster models. The existence and uniqueness of the solution for the new population problem are proved, as well the asymptotic periodicity but under some simplifying assumptions.

On the Cauchy problem for convolution equations

(2013)

Colloquium Mathematicae

We consider one-parameter (C₀)-semigroups of operators in the space ' ( ; m ) with infinitesimal generator of the form ( G * ) | ' ( ; m ) where G is an M m × m -valued rapidly decreasing distribution on ℝⁿ. It is proved that the Petrovskiĭ condition for forward evolution ensures not only the existence and uniqueness of the above semigroup but also its nice behaviour after restriction to whichever of the function spaces ( ; m ) , L p ( ; m ) , p ∈ [1,∞], ( a ) ( ; m ) , a ∈ ]0,∞[, or the spaces L q ' ( ; m ) , q ∈ ]1,∞], of bounded distributions.

Currently displaying 1 – 6 of 6

Page 1