The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A discretized boundary value problem for the Laplace equation with the Dirichlet and Neumann boundary conditions on an equilateral triangle with a triangular mesh is transformed into a problem of the same type on a rectangle. Explicit formulae for all eigenvalues and all eigenfunctions are given.
We consider the existence and uniqueness problem for partial
differential-functional equations of the first order with the initial condition
for which the right-hand side depends on the derivative of unknown function
with deviating argument.
We consider the Fourier first initial-boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations of parabolic type. The right-hand sides of the system are functionals of unknown functions. The existence and uniqueness of the solution are proved by the Banach fixed point theorem.
The paper deals with the initial boundary value problem of Robin type for parabolic functional differential equations. The unknown function is the functional variable in the equation and the partial derivatives appear in the classical sense. A theorem on the existence of a classical solution is proved. Our formulation and results cover differential equations with deviated variables and differential integral problems.
Consider a nonlinear differential-functional equation
(1) Au + f(x,u(x),u) = 0
where
,
, G is a bounded domain with (0 < α < 1) boundary, the operator A is strongly uniformly elliptic in G and u is a real function.
For the equation (1) we consider the Dirichlet problem with the boundary condition
(2) u(x) = h(x) for x∈ ∂G.
We use Chaplygin’s method [5] to prove that problem (1), (2) has at least one regular solution in a suitable class of functions.
Using the method of upper and lower...
We consider the Fourier first boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations. To prove the existence and uniqueness of solution, we apply a monotone iterative method using J. Szarski's results on differential-functional inequalities and a comparison theorem for infinite systems.
In this paper we study the existence of classical solutions for a class of abstract neutral integro-differential equation with unbounded delay. A concrete application to partial neutral integro-differential equations is considered.
The Cauchy problem for an infinite system of parabolic type equations is studied. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. We prove the existence and uniqueness of a bounded solution under Carathéodory type conditions and its differentiability, as well as the existence and uniqueness in the class of functions satisfying a natural growth condition. Both results are obtained by the fixed point method.
Currently displaying 1 –
20 of
32