The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider second order quasilinear evolution equations where also the main part contains functional dependence on the unknown function. First, existence of solutions in is proved and examples satisfying the assumptions of the existence theorem are formulated. Then a uniqueness theorem is proved. Finally, existence and some qualitative properties of the solutions in (boundedness and stabilization as ) are shown.
We consider second order semilinear hyperbolic functional differential equations where the lower order terms contain functional dependence on the unknown function. Existence and uniqueness of solutions for t ∈ (0,T), existence for t ∈ (0,∞) and some qualitative properties of the solutions in (0,∞) are shown.
It is proved that parabolic equations with infinite delay generate -semigroup on the space of initial conditions, such that local stable and unstable manifolds can be constructed for a fully nonlinear problems with help of usual methods of the theory of parabolic equations.
The existence of a one-parameter family of stationary solutions to a fragmentation equation with size diffusion is established. The proof combines a fixed point argument and compactness techniques.
Currently displaying 1 –
14 of
14