General finite difference approximation to the Cauchy problem for nonlinear parabolic differential-functional equations
A generalized Cauchy problem for hyperbolic functional differential systems is considered. The initial problem is transformed into a system of functional integral equations. The existence of solutions of this system is proved by using the method of successive approximations. Differentiability of solutions with respect to initial functions is proved. It is important that functional differential systems considered in this paper do not satisfy the Volterra condition.
Classical solutions of initial boundary value problems are approximated by solutions of associated differential difference problems. A method of lines for an unknown function for the original problem and for its partial derivatives with respect to spatial variables is constructed. A complete convergence analysis for the method is given. A stability result is proved by using differential inequalities with nonlinear estimates of the Perron type for the given operators. A discretization...
Generalized solutions to quasilinear hyperbolic systems in the second canonical form are investigated. A theorem on existence, uniqueness and continuous dependence upon the boundary data is given. The proof is based on the methods due to L. Cesari and P. Bassanini for systems which are not functional.
In this paper, we discuss the special diffusive hematopoiesis model with Neumann boundary condition. Sufficient conditions are provided for the global attractivity and oscillation of the equilibrium for Eq. (*), by using a new theorem we stated and proved. When P(t, χ) does not depend on a spatial variable χ ∈ Ω, these results are also true and extend or complement existing results. Finally, existence and stability of the Hopf bifurcation for Eq. (*) are studied.
We prove the existence of a compact connected global attractor for a class of abstract semilinear parabolic equations with infinite delay.
In this paper, we study the global existence of solutions for first and second order initial value problems for functional semilinear integrodifferential equations in Banach space, by using the Leray-Schauder Alternative or the Nonlinear Alternative for contractive maps.
We investigate the existence and uniqueness of solutions of hyperbolic fractional order differential equations with state-dependent delay by using a nonlinear alternative of Leray-Schauder type due to Frigon and Granas for contraction maps on Fréchet spaces.