Semicontinuity and continuous selections for the multivalued superposition operator without assuming growth-type conditions
Let Ω be a measure space, and E, F be separable Banach spaces. Given a multifunction , denote by the set of all measurable selections of the multifunction , s ↦ f(s,x(s)), for a function x: Ω → E. First, we obtain new theorems on H-upper/H-lower/lower semicontinuity (without assuming any conditions on the growth of the generating multifunction f(s,u) with respect to u) for the multivalued (Nemytskiĭ) superposition operator mapping some open domain G ⊂ X into , where X and Y are Köthe-Bochner...