Page 1

Displaying 1 – 2 of 2

Showing per page

Galerkin approximations for nonlinear evolution inclusions

Shouchuan Hu, Nikolaos S. Papageorgiou (1994)

Commentationes Mathematicae Universitatis Carolinae

In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.

Generalized gradients for locally Lipschitz integral functionals on non- L p -type spaces of measurable functions

Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)

Banach Center Publications

Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, E * ω * be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put G ( x ) : = Ω g ( s , x ( s ) ) d μ ( s ) . Consider the integral functional G defined on some non- L p -type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke’s generalized gradient (multivalued C-subgradient)...

Currently displaying 1 – 2 of 2

Page 1