Displaying 221 – 240 of 287

Showing per page

Anisotropic inverse problems and Carleman estimates

David Dos Santos Ferreira (2007/2008)

Séminaire Équations aux dérivées partielles

This note reports on recent results on the anisotropic Calderón problem obtained in a joint work with Carlos E. Kenig, Mikko Salo and Gunther Uhlmann [8]. The approach is based on the construction of complex geometrical optics solutions to the Schrödinger equation involving phases introduced in the work [12] of Kenig, Sjöstrand and Uhlmann in the isotropic setting. We characterize those manifolds where the construction is possible, and give applications to uniqueness for the corresponding anisotropic...

Anisotropic parabolic problems with slowly or rapidly growing terms

Agnieszka Świerczewska-Gwiazda (2014)

Colloquium Mathematicae

We consider an abstract parabolic problem in a framework of maximal monotone graphs, possibly multi-valued, with growth conditions formulated with the help of an x-dependent N-function. The main novelty of the paper consists in the lack of any growth restrictions on the N-function combined with its anisotropic character, namely we allow the dependence on all the directions of the gradient, not only on its absolute value. This leads to using the notion of modular convergence and studying in detail...

Application of relaxation scheme to degenerate variational inequalities

Jela Babušíková (2001)

Applications of Mathematics

In this paper we are concerned with the solution of degenerate variational inequalities. To solve this problem numerically, we propose a numerical scheme which is based on the relaxation scheme using non-standard time discretization. The approximate solution on each time level is obtained in the iterative way by solving the corresponding elliptic variational inequalities. The convergence of the method is proved.

Currently displaying 221 – 240 of 287