Displaying 721 – 740 of 1901

Showing per page

Identification of Green’s Functions Singularities by Cross Correlation of Ambient Noise Signals

Josselin Garnier (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

In this paper we consider the problem of estimating the singular support of the Green’s function of the wave equation by using ambient noise signals recorded by passive sensors. We assume that noise sources emit stationary random signals into the medium which are recorded by sensors. We explain how the cross correlation of the signals recorded by two sensors is related to the Green’s function between the sensors. By looking at the singular support of the cross correlation we can obtain an estimate...

Identification of source term in a nonlinear degenerate parabolic equation with memory

Soufiane Abid, Khalid Atifi, El-Hassan Essoufi, Abderrahim Zafrar (2024)

Applications of Mathematics

In this work, we consider an inverse backward problem for a nonlinear parabolic equation of the Burgers' type with a memory term from final data. To this aim, we first establish the well-posedness of the direct problem. On the basis of the optimal control framework, the existence and necessary condition of the minimizer for the cost functional are established. The global uniqueness and stability of the minimizer are deduced from the necessary condition. Numerical experiments demonstrate the effectiveness...

Identification problems for degenerate parabolic equations

Fadi Awawdeh, Hamed M. Obiedat (2013)

Applications of Mathematics

This paper deals with multivalued identification problems for parabolic equations. The problem consists of recovering a source term from the knowledge of an additional observation of the solution by exploiting some accessible measurements. Semigroup approach and perturbation theory for linear operators are used to treat the solvability in the strong sense of the problem. As an important application we derive the corresponding existence, uniqueness, and continuous dependence results for different...

Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients⋆⋆⋆

J. Beck, F. Nobile, L. Tamellini, R. Tempone (2011)

ESAIM: Proceedings

In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce...

Implicit difference methods for nonlinear first order partial functional differential systems

Elżbieta Puźniakowska-Gałuch (2010)

Applicationes Mathematicae

Initial problems for nonlinear hyperbolic functional differential systems are considered. Classical solutions are approximated by solutions of suitable quasilinear systems of difference functional equations. The numerical methods used are difference schemes which are implicit with respect to the time variable. Theorems on convergence of difference schemes and error estimates of approximate solutions are presented. The proof of the stability is based on a comparison technique with nonlinear estimates...

Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type

K. Kropielnicka (2008)

Applicationes Mathematicae

Classical solutions of quasilinear functional differential equations are approximated with solutions of implicit difference schemes. Proofs of convergence of the difference methods are based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.

Implicit difference schemes for mixed problems related to parabolic functional differential equations

Milena Netka (2011)

Annales Polonici Mathematici

Solutions of initial boundary value problems for parabolic functional differential equations are approximated by solutions of implicit difference schemes. The existence and uniqueness of approximate solutions is proved. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type for given operators. It is shown that the new methods are considerably better than the explicit difference schemes. Numerical examples are presented.

Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay

Abbas, Saïd, Benchohra, Mouffak (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11This paper deals with the existence and uniqueness of solutions of two classes of partial impulsive hyperbolic differential equations with fixed time impulses and state-dependent delay involving the Caputo fractional derivative. Our results are obtained upon suitable fixed point theorems.

Inertial manifolds for retarded second order in time evolution equations in admissible spaces

Cung The Anh, Le Van Hieu (2013)

Annales Polonici Mathematici

Using the Lyapunov-Perron method, we prove the existence of an inertial manifold for the process associated to a class of non-autonomous semilinear hyperbolic equations with finite delay, where the linear principal part is positive definite with a discrete spectrum having a sufficiently large distance between some two successive spectral points, and the Lipschitz coefficient of the nonlinear term may depend on time and belongs to some admissible function spaces.

Infinite systems of first order PFDEs with mixed conditions

W. Czernous (2008)

Annales Polonici Mathematici

We consider mixed problems for infinite systems of first order partial functional differential equations. An infinite number of deviating functions is permitted, and the delay of an argument may also depend on the spatial variable. A theorem on the existence of a solution and its continuous dependence upon initial boundary data is proved. The method of successive approximations is used in the existence proof. Infinite differential systems with deviated arguments and differential integral systems...

Currently displaying 721 – 740 of 1901