Displaying 1381 – 1400 of 1901

Showing per page

Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

Yuriy Golovaty, Volodymyr Flyud (2017)

Open Mathematics

We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic...

Solutions of Fractional Diffusion-Wave Equations in Terms of H-functions

Boyadjiev, Lyubomir, Al-Saqabi, Bader (2012)

Mathematica Balkanica New Series

MSC 2010: 35R11, 42A38, 26A33, 33E12The method of integral transforms based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is utilized for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the Weyl space-fractional operator. The solutions obtained are in integral form whose kernels are Green functions expressed in terms of the Fox H-functions....

Currently displaying 1381 – 1400 of 1901