On the Fefferman-Phong inequality
We show that the number of derivatives of a non negative 2-order symbol needed to establish the classical Fefferman-Phong inequality is bounded by improving thus the bound obtained recently by N. Lerner and Y. Morimoto. In the case of symbols of type , we show that this number is bounded by ; more precisely, for a non negative symbol , the Fefferman-Phong inequality holds if are bounded for, roughly, . To obtain such results and others, we first prove an abstract result which says that...