The Cauchy problem for degenerate parabolic equations in Gevrey classes
Let be a harmonic function in the half-plane , . We define a family of functionals , that are analogs of the family of local times associated to the process where is Brownian motion in . We show that is bounded in if and only if belongs to , an equivalence already proved by Barlow and Yor for the supremum of the local times. Our proof relies on the theory of singular integrals due to Caldéron and Zygmund, rather than the stochastic calculus.
This paper is the second part of the paper ``The level crossing problem in semi-classical analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric Pham). We consider here the case where the dispersion matrix is complex Hermitian.
In a series of recent papers, Nils Dencker proves that condition implies the local solvability of principal type pseudodifferential operators (with loss of derivatives for all positive ), verifying the last part of the Nirenberg-Treves conjecture, formulated in 1971. The origin of this question goes back to the Hans Lewy counterexample, published in 1957. In this text, we follow the pattern of Dencker’s papers, and we provide a proof of local solvability with a loss of derivatives.
The aim of this paper is to use an abstract realization of the Weyl correspondence to define functions of pseudo-differential operators. We consider operators that form a self-adjoint Banach algebra. We construct on this algebra a functional calculus with respect to functions which are defined on the Euclidean space and have a finite number of derivatives.
We investigate the properties an exotic symbol class of pseudodifferential operators, Sjöstrand's class, with methods of time-frequency analysis (phase space analysis). Compared to the classical treatment, the time-frequency approach leads to striklingly simple proofs of Sjöstrand's fundamental results and to far-reaching generalizations.
For several classes of pseudodifferential operators with operator-valued symbol analytic index formulas are found. The common feature is that usual index formulas are not valid for these operators. Applications are given to pseudodifferential operators on singular manifolds.
In this note we describe recent results on semiclassical random walk associated to a probability density which may also concentrate as the semiclassical parameter goes to zero. The main result gives a spectral asymptotics of the close to eigenvalues. This problem was studied in [1] and relies on a general factorization result for pseudo-differential operators. In this note we just sketch the proof of this second theorem. At the end of the note, using the factorization, we give a new proof of the...
In this paper we show an asymptotic formula for the number of eigenvalues of a pseudodifferential operator. As a corollary we obtain a generalization of the result by Shubin and Tulovskiĭ about the Weyl asymptotic formula. We also consider a version of the Weyl formula for the quasi-classical asymptotics.