Page 1

Displaying 1 – 2 of 2

Showing per page

Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques

Stéphane Le Borgne, Françoise Pène (2005)

Bulletin de la Société Mathématique de France

Nous présentons une méthode permettant d’établir le théorème limite central avec vitesse en n - 1 / 2 pour certains systèmes dynamiques. Elle est basée sur une propriété de décorrélation forte qui semble assez naturelle dans le cadre des systèmes quasi-hyperboliques. Nous prouvons que cette propriété est satisfaite par les exemples des flots diagonaux sur un quotient compact de SL ( d , ) et les « transformations » non uniformément hyperboliques du tore 𝕋 3 étudiées par Shub et Wilkinson.

Vitesse de convergence dans le théorème limite central pour des chaînes de Markov fortement ergodiques

Loïc Hervé (2008)

Annales de l'I.H.P. Probabilités et statistiques

Soit Q une probabilité de transition sur un espace mesurable E, admettant une probabilité invariante, soit (Xn)n une chaîne de Markov associée à Q, et soit ξ une fonction réelle mesurable sur E, et Sn=∑nk=1ξ(Xk). Sous des hypothèses fonctionnelles sur l’action de Q et des noyaux de Fourier Q(t), nous étudions la vitesse de convergence dans le théorème limite central pour la suite ( S n n ) n . Selon les hypothèses nous obtenons une vitesse enn−τ/2 pour tout τ<1, ou bien en n−1/2. Nous appliquons la...

Currently displaying 1 – 2 of 2

Page 1