Faithful zero-dimensional principal extensions
We prove that every topological dynamical system (X,T) has a faithful zero-dimensional principal extension, i.e. a zero-dimensional extension (Y,S) such that for every S-invariant measure ν on Y the conditional entropy h(ν | X) is zero, and, in addition, every invariant measure on X has exactly one preimage on Y. This is a strengthening of the authors' result in Acta Appl. Math. [to appear] (where the extension was principal, but not necessarily faithful).