Page 1

Displaying 1 – 8 of 8

Showing per page

Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture

Tomasz Downarowicz, Stanisław Kasjan (2015)

Studia Mathematica

Although Sarnak's conjecture holds for compact group rotations (irrational rotations, odometers), it is not even known whether it holds for all Jewett-Krieger models of such rotations. In this paper we show that it does, as long as the model is at the same a topological extension, via the same map that establishes the isomorphism, of an equicontinuous model. In particular, we recover (after [AKL]) that regular Toeplitz systems satisfy Sarnak's conjecture, and, as another consequence, so do...

On embeddability of automorphisms into measurable flows from the point of view of self-joining properties

Joanna Kułaga-Przymus (2015)

Fundamenta Mathematicae

We compare self-joining and embeddability properties. In particular, we prove that a measure preserving flow ( T t ) t with T₁ ergodic is 2-fold quasi-simple (resp. 2-fold distally simple) if and only if T₁ is 2-fold quasi-simple (resp. 2-fold distally simple). We also show that the Furstenberg-Zimmer decomposition for a flow ( T t ) t with T₁ ergodic with respect to any flow factor is the same for ( T t ) t and for T₁. We give an example of a 2-fold quasi-simple flow disjoint from simple flows and whose time-one map is...

On the directional entropy of ℤ²-actions generated by cellular automata

M. Courbage, B. Kamiński (2002)

Studia Mathematica

We show that for any cellular automaton (CA) ℤ²-action Φ on the space of all doubly infinite sequences with values in a finite set A, determined by an automaton rule F = F [ l , r ] , l,r ∈ ℤ, l ≤ r, and any Φ-invariant Borel probability measure, the directional entropy h v ( Φ ) , v⃗= (x,y) ∈ ℝ², is bounded above by m a x ( | z l | , | z r | ) l o g A if z l z r 0 and by | z r - z l | in the opposite case, where z l = x + l y , z r = x + r y . We also show that in the class of permutative CA-actions the bounds are attained if the measure considered is uniform Bernoulli.

On the entropy for group actions on the circle

Eduardo Jorquera (2009)

Fundamenta Mathematicae

We show that for a finitely generated group of C² circle diffeomorphisms, the entropy of the action equals the entropy of the restriction of the action to the non-wandering set.

On the g -entropy and its Hudetz correction

Beloslav Riečan (2002)

Kybernetika

The Hudetz correction of the fuzzy entropy is applied to the g -entropy. The new invariant is expressed by the Hudetz correction of fuzzy entropy.

Orders of accumulation of entropy

David Burguet, Kevin McGoff (2012)

Fundamenta Mathematicae

For a continuous map T of a compact metrizable space X with finite topological entropy, the order of accumulation of entropy of T is a countable ordinal that arises in the context of entropy structures and symbolic extensions. We show that every countable ordinal is realized as the order of accumulation of some dynamical system. Our proof relies on functional analysis of metrizable Choquet simplices and a realization theorem of Downarowicz and Serafin. Further, if M is a metrizable Choquet simplex,...

Currently displaying 1 – 8 of 8

Page 1