Page 1

Displaying 1 – 7 of 7

Showing per page

Partition sensitivity for measurable maps

C. A. Morales (2013)

Mathematica Bohemica

We study countable partitions for measurable maps on measure spaces such that, for every point x , the set of points with the same itinerary as that of x is negligible. We prove in nonatomic probability spaces that every strong generator (Parry, W., Aperiodic transformations and generators, J. London Math. Soc. 43 (1968), 191–194) satisfies this property (but not conversely). In addition, measurable maps carrying partitions with this property are aperiodic and their corresponding spaces are nonatomic....

Period doubling, entropy, and renormalization

Jun Hu, Charles Tresser (1998)

Fundamenta Mathematicae

We show that in any family of stunted sawtooth maps, the set of maps whose set of periods is the set of all powers of 2 has no interior point. Similar techniques then allow us to show that, under mild assumptions, smooth multimodal maps whose set of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of all periodic intervals going to zero as the period goes to infinity.

Phenomena in rank-one ℤ²-actions

Tomasz Downarowicz, Jacek Serafin (2009)

Studia Mathematica

We present an example of a rank-one partially mixing ℤ²-action which possesses a non-rigid factor and for which the Weak Closure Theorem fails. This is in sharp contrast to one-dimensional actions, which cannot display this type of behavior.

Physical measures for infinite-modal maps

Vítor Araújo, Maria José Pacifico (2009)

Fundamenta Mathematicae

We analyze certain parametrized families of one-dimensional maps with infinitely many critical points from the measure-theoretical point of view. We prove that such families have absolutely continuous invariant probability measures for a positive Lebesgue measure subset of parameters. Moreover, we show that both the density of such a measure and its entropy vary continuously with the parameter. In addition, we obtain exponential rate of mixing for these measures and also show that they satisfy the...

Position dependent random maps in one and higher dimensions

Wael Bahsoun, Paweł Góra (2005)

Studia Mathematica

A random map is a discrete-time dynamical system in which one of a number of transformations is randomly selected and applied on each iteration of the process. We study random maps with position dependent probabilities on the interval and on a bounded domain of ℝⁿ. Sufficient conditions for the existence of an absolutely continuous invariant measure for a random map with position dependent probabilities on the interval and on a bounded domain of ℝⁿ are the main results.

Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps

Jérôme Buzzi (2010)

Annales de l’institut Fourier

Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably...

Currently displaying 1 – 7 of 7

Page 1