Page 1

Displaying 1 – 11 of 11

Showing per page

Entropy dimension and variational principle

Young-Ho Ahn, Dou Dou, Kyewon Koh Park (2010)

Studia Mathematica

Recently the notions of entropy dimension for topological and measurable dynamical systems were introduced in order to study the complexity of zero entropy systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions range from zero to one and whose measure-theoretic entropy dimensions are identically zero. Hence entropy dimension does not obey the variational principle.

Entropy of eigenfunctions of the Laplacian in dimension 2

Gabriel Rivière (2010)

Journées Équations aux dérivées partielles

We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure μ for the geodesic flow g t is bounded from below by half of the Ruelle upper bound. (This text has been written for the proceedings of the 37 èmes Journées EDP (Port d’Albret-June, 7-11 2010))

Entropy of probability kernels from the backward tail boundary

Tim Austin (2015)

Studia Mathematica

A number of recent works have sought to generalize the Kolmogorov-Sinai entropy of probability-preserving transformations to the setting of Markov operators acting on the integrable functions on a probability space (X,μ). These works have culminated in a proof by Downarowicz and Frej that various competing definitions all coincide, and that the resulting quantity is uniquely characterized by certain abstract properties. On the other hand, Makarov has shown that this 'operator...

Entropy of scalar reaction-diffusion equations

Siniša Slijepčević (2014)

Mathematica Bohemica

We consider scalar reaction-diffusion equations on bounded and extended domains, both with the autonomous and time-periodic nonlinear term. We discuss the meaning and implications of the ergodic Poincaré-Bendixson theorem to dynamics. In particular, we show that in the extended autonomous case, the space-time topological entropy is zero. Furthermore, we characterize in the extended nonautonomous case the space-time topological and metric entropies as entropies of a pair of commuting planar homeomorphisms....

Entropy pairs of ℤ² and their directional properties

Kyewon Koh Park, Uijung Lee (2004)

Studia Mathematica

Topological and metric entropy pairs of ℤ²-actions are defined and their properties are investigated, analogously to ℤ-actions. In particular, mixing properties are studied in connection with entropy pairs.

Epsilon-independence between two processes

Tomasz Downarowicz, Paulina Grzegorek (2008)

Studia Mathematica

We study the notion of ε-independence of a process on finitely (or countably) many states and that of ε-independence between two processes defined on the same measure preserving transformation. For that we use the language of entropy. First we demonstrate that if a process is ε-independent then its ε-independence from another process can be verified using a simplified condition. The main direction of our study is to find natural examples of ε-independence. In case of ε-independence of one process,...

Ergodic properties of square-free numbers

Francesco Cellarosi, Jakov G. Sinaj (2013)

Journal of the European Mathematical Society

We construct a natural invariant measure concentrated on the set of square-free numbers, and invariant under the shift. We prove that the corresponding dynamical system is isomorphic to a translation on a compact, Abelian group. This implies that this system is not weakly mixing and has zero measure-theoretical entropy.

Extreme Relations for Topological Flows

Brunon Kamiński, Artur Siemaszko, Jerzy Szymański (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

We introduce the concept of an extreme relation for a topological flow as an analogue of the extreme measurable partition for a measure-preserving transformation considered by Rokhlin and Sinai, and we show that every topological flow has such a relation for any invariant measure. From this result, it follows, among other things, that any deterministic flow has zero topological entropy and any flow which is a K-system with respect to an invariant measure with full support is a topological K-flow....

Currently displaying 1 – 11 of 11

Page 1