Densité des orbites des trajectoires browniennes sous l’action de la transformation de Lévy
Let Tbe a measurable transformation of a probability space , preserving the measureπ. Let X be a random variable with law π. Call K(⋅, ⋅) a regular version of the conditional law of X given T(X). Fix . We first prove that ifB is reachable from π-almost every point for a Markov chain of kernel K, then the T-orbit of π-almost every point X visits B. We then apply this result to the Lévy transform, which transforms the Brownian motion W into the Brownian motion |W| − L, where L is the local time...