Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces.
We give an elementary proof for the uniqueness of absolutely continuous invariant measures for expanding random dynamical systems and study their mixing properties.
This article is concerned with the study of the discrete version of generalized ergodic Calderón-Zygmund singular operators. It is shown that such discrete ergodic singular operators for a class of superadditive processes, namely, bounded symmetric admissible processes relative to measure preserving transformations, are weak (1,1). From this maximal inequality, a.e. existence of the discrete ergodic singular transform is obtained for such superadditive processes. This generalizes the well-known...
Let be the group of Hamiltonian diffeomorphisms of a closed symplectic manifold . A loop is called strictly ergodic if for some irrational number the associated skew product map defined by is strictly ergodic. In the present paper we address the following question. Which elements of the fundamental group of can be represented by strictly ergodic loops? We prove existence of contractible strictly ergodic loops for a wide class of symplectic manifolds (for instance for simply connected...