Displaying 521 – 540 of 791

Showing per page

Orderings of the rationals and dynamical systems

Claudio Bonanno, Stefano Isola (2009)

Colloquium Mathematicae

This paper is devoted to a systematic study of a class of binary trees encoding the structure of rational numbers both from arithmetic and dynamical point of view. The paper is divided into three parts. The first one is mainly expository and consists in a critical review of rather standard topics such as Stern-Brocot and Farey trees and their connections with continued fraction expansion and the question mark function. In the second part we introduce two classes of (invertible and non-invertible)...

Orders of accumulation of entropy

David Burguet, Kevin McGoff (2012)

Fundamenta Mathematicae

For a continuous map T of a compact metrizable space X with finite topological entropy, the order of accumulation of entropy of T is a countable ordinal that arises in the context of entropy structures and symbolic extensions. We show that every countable ordinal is realized as the order of accumulation of some dynamical system. Our proof relies on functional analysis of metrizable Choquet simplices and a realization theorem of Downarowicz and Serafin. Further, if M is a metrizable Choquet simplex,...

Parabolic Cantor sets

Mariusz Urbański (1996)

Fundamenta Mathematicae

The notion of a parabolic Cantor set is introduced allowing in the definition of hyperbolic Cantor sets some fixed points to have derivatives of modulus one. Such difference in the assumptions is reflected in geometric properties of these Cantor sets. It turns out that if the Hausdorff dimension of this set is denoted by h, then its h-dimensional Hausdorff measure vanishes but the h-dimensional packing measure is positive and finite. This latter measure can also be dynamically characterized as the...

Parallelepipeds, nilpotent groups and Gowers norms

Bernard Host, Bryna Kra (2008)

Bulletin de la Société Mathématique de France

In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions 2 and 3 and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.

Partition sensitivity for measurable maps

C. A. Morales (2013)

Mathematica Bohemica

We study countable partitions for measurable maps on measure spaces such that, for every point x , the set of points with the same itinerary as that of x is negligible. We prove in nonatomic probability spaces that every strong generator (Parry, W., Aperiodic transformations and generators, J. London Math. Soc. 43 (1968), 191–194) satisfies this property (but not conversely). In addition, measurable maps carrying partitions with this property are aperiodic and their corresponding spaces are nonatomic....

Period doubling, entropy, and renormalization

Jun Hu, Charles Tresser (1998)

Fundamenta Mathematicae

We show that in any family of stunted sawtooth maps, the set of maps whose set of periods is the set of all powers of 2 has no interior point. Similar techniques then allow us to show that, under mild assumptions, smooth multimodal maps whose set of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of all periodic intervals going to zero as the period goes to infinity.

Phenomena in rank-one ℤ²-actions

Tomasz Downarowicz, Jacek Serafin (2009)

Studia Mathematica

We present an example of a rank-one partially mixing ℤ²-action which possesses a non-rigid factor and for which the Weak Closure Theorem fails. This is in sharp contrast to one-dimensional actions, which cannot display this type of behavior.

Physical measures for infinite-modal maps

Vítor Araújo, Maria José Pacifico (2009)

Fundamenta Mathematicae

We analyze certain parametrized families of one-dimensional maps with infinitely many critical points from the measure-theoretical point of view. We prove that such families have absolutely continuous invariant probability measures for a positive Lebesgue measure subset of parameters. Moreover, we show that both the density of such a measure and its entropy vary continuously with the parameter. In addition, we obtain exponential rate of mixing for these measures and also show that they satisfy the...

Piecewise-deterministic Markov processes

Jolanta Kazak (2013)

Annales Polonici Mathematici

Poisson driven stochastic differential equations on a separable Banach space are examined. Some sufficient conditions are given for the asymptotic stability of a Markov operator P corresponding to the change of distribution from jump to jump. We also give criteria for the continuous dependence of the invariant measure for P on the intensity of the Poisson process.

Poincaré's recurrence theorem for set-valued dynamical systems

Jean-Pierre Aubin, Hélène Frankowska, Andrzej Lasota (1991)

Annales Polonici Mathematici

 Abstract. The existence theorem of an invariant measure and Poincare's Recurrence Theorem are extended to set-valued dynamical systems with closed graph on a compact metric space.

Pointwise convergence for subsequences of weighted averages

Patrick LaVictoire (2011)

Colloquium Mathematicae

We prove that if μₙ are probability measures on ℤ such that μ̂ₙ converges to 0 uniformly on every compact subset of (0,1), then there exists a subsequence n k such that the weighted ergodic averages corresponding to μ n k satisfy a pointwise ergodic theorem in L¹. We further discuss the relationship between Fourier decay and pointwise ergodic theorems for subsequences, considering in particular the averages along n² + ⌊ρ(n)⌋ for a slowly growing function ρ. Under some monotonicity assumptions, the rate...

Pointwise convergence of nonconventional averages

I. Assani (2005)

Colloquium Mathematicae

We answer a question of H. Furstenberg on the pointwise convergence of the averages 1 / N n = 1 N U ( f · R ( g ) ) , where U and R are positive operators. We also study the pointwise convergence of the averages 1 / N n = 1 N f ( S x ) g ( R x ) when T and S are measure preserving transformations.

Currently displaying 521 – 540 of 791