A combinatorial proof of the extension property for partial isometries
We present a short and self-contained proof of the extension property for partial isometries of the class of all finite metric spaces.
We present a short and self-contained proof of the extension property for partial isometries of the class of all finite metric spaces.
Let be a field, and the set of monomials of . It is well known that the set of monomial ideals of is in a bijective correspondence with the set of all subsemiflows of the -semiflow . We generalize this to the case of term ideals of , where is a commutative Noetherian ring. A term ideal of is an ideal of generated by a family of terms , where and are integers .
Giordano et al. (2010) showed that every minimal free -action of a Cantor space X is orbit equivalent to some ℤ-action. Trying to avoid the K-theory used there and modifying Forrest’s (2000) construction of a Bratteli diagram, we show how to define a (one-dimensional) continuous and injective map F on X∖one point such that for a residual subset of X the orbits of F are the same as the orbits of a given minimal free -action.
The centralizer of a semisimple isometric extension of a minimal flow is described.
In the paper a new proof of Lemma 11 in the above-mentioned paper is given. Its original proof was based on Theorem 3 which has been shown to be incorrect.
The main goal of this paper is the investigation of a relevant property which appears in the various definition of deterministic topological chaos for discrete time dynamical system: transitivity. Starting from the standard Devaney's notion of topological chaos based on regularity, transitivity, and sensitivity to the initial conditions, the critique formulated by Knudsen is taken into account in order to exclude periodic chaos from this definition. Transitivity (or some stronger versions of it)...
Moore [Fund. Math. 220 (2013)] characterizes the amenability of the automorphism groups of countable ultrahomogeneous structures by a Ramsey-type property. We extend this result to the automorphism groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove that amenability is a condition.
We prove that every linear-activity automaton group is amenable. The proof is based on showing that a random walk on a specially constructed degree 1 automaton group – the mother group – has asymptotic entropy 0. Our result answers an open question by Nekrashevych in the Kourovka notebook, and gives a partial answer to a question of Sidki.
Nilsequences arose in the study of the multiple ergodic averages associated to Furstenberg’s proof of Szemerédi’s Theorem and have since played a role in problems in additive combinatorics. Nilsequences are a generalization of almost periodic sequences and we study which portions of the classical theory for almost periodic sequences can be generalized for two step nilsequences. We state and prove basic properties for two step nilsequences and give a classification scheme for them.