Positively expansive homeomorphisms of compact spaces.
This article investigates under what conditions nontransitivity can coexist with the asymptotic average shadowing property. We show that there is a large class of maps satisfying both conditions simultaneously and that it is possible to find such examples even among maps on a compact interval. We also study the limit shadowing property and its relation to the asymptotic average shadowing property.
A substitution φ is strong Pisot if its abelianization matrix is nonsingular and all eigenvalues except the Perron-Frobenius eigenvalue have modulus less than one. For strong Pisot φ that satisfies a no cycle condition and for which the translation flow on the tiling space has pure discrete spectrum, we describe the collection of pairs of proximal tilings in in a natural way as a substitution tiling space. We show that if ψ is another such substitution, then and are homeomorphic if and...