The automorphism group of the random lattice is not amenable
We prove that the automorphism group of the random lattice is not amenable, and we identify the universal minimal flow for the automorphism group of the random distributive lattice.
We prove that the automorphism group of the random lattice is not amenable, and we identify the universal minimal flow for the automorphism group of the random distributive lattice.
If φ is a Pisot substitution of degree d, then the inflation and substitution homeomorphism Φ on the tiling space factors via geometric realization onto a d-dimensional solenoid. Under this realization, the collection of Φ-periodic asymptotic tilings corresponds to a finite set that projects onto the branch locus in a d-torus. We prove that if two such tiling spaces are homeomorphic, then the resulting branch loci are the same up to the action of certain affine maps on the torus.
We consider dynamical systems of the form where is a compact metric space and is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract -limit sets, answering a question by Will Brian.
It is shown that each expansive group action on a Peano continuum having a free dendrite must have a ping-pong game, and has positive geometric entropy when the acting group is finitely generated. As a corollary, it is shown that each Peano continuum having a free dendrite admits no expansive nilpotent group actions.
Each topological group G admits a unique universal minimal dynamical system (M(G),G). For a locally compact noncompact group this is a nonmetrizable system with a rich structure, on which G acts effectively. However there are topological groups for which M(G) is the trivial one-point system (extremely amenable groups), as well as topological groups G for which M(G) is a metrizable space and for which one has an explicit description. We show that for the topological group G = Homeo(E) of self-homeomorphisms...
Let ℝ be the real line and let Homeo₊(ℝ) be the orientation preserving homeomorphism group of ℝ. Then a subgroup G of Homeo₊(ℝ) is called tightly transitive if there is some point x ∈ X such that the orbit Gx is dense in X and no subgroups H of G with |G:H| = ∞ have this property. In this paper, for each integer n > 1, we determine all the topological conjugation classes of tightly transitive subgroups G of Homeo₊(ℝ) which are isomorphic to ℤⁿ and have countably many nontransitive points.
We investigate the connections between Ramsey properties of Fraïssé classes and the universal minimal flow of the automorphism group of their Fraïssé limits. As an extension of a result of Kechris, Pestov and Todorcevic (2005) we show that if the class has finite Ramsey degree for embeddings, then this degree equals the size of . We give a partial answer to a question of Angel, Kechris and Lyons (2014) showing that if is a relational Ramsey class and is amenable, then admits a unique invariant...
For a continuous map f preserving orbits of an aperiodic -action on a compact space, its displacement function assigns to x the “time” it takes to move x to f(x). We show that this function is continuous if the action is minimal. In particular, f is homotopic to the identity along the orbits of the action.
A subset S of a topological dynamical system (X,f) containing at least two points is called a scrambled set if for any x,y ∈ S with x ≠ y one has and , d being the metric on X. The system (X,f) is called Li-Yorke chaotic if it has an uncountable scrambled set. These notions were developed in the context of interval maps, in which the existence of a two-point scrambled set implies Li-Yorke chaos and many other chaotic properties. In the present paper we address several questions about scrambled...
Let ϕ:G → Homeo₊(ℝ) be an orientation preserving action of a discrete solvable group G on ℝ. In this paper, the topological transitivity of ϕ is investigated. In particular, the relations between the dynamical complexity of G and the algebraic structure of G are considered.
We construct an example of two commuting homeomorphisms S, T of a compact metric space X such that the union of all minimal sets for S is disjoint from the union of all minimal sets for T. In other words, there are no common minimal points. This answers negatively a question posed in [C-L]. We remark that Furstenberg proved the existence of "doubly recurrent" points (see [F]). Not only are these points recurrent under both S and T, but they recur along the same sequence of powers. Our example shows...