Displaying 21 – 40 of 43

Showing per page

Linear growth of the derivative for measure-preserving diffeomorphisms

Krzysztof Frączek (2000)

Colloquium Mathematicae

We consider measure-preserving diffeomorphisms of the torus with zero entropy. We prove that every ergodic C 1 -diffeomorphism with linear growth of the derivative is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle C 1 -cocycle. We also show that for no positive β ≠ 1 does there exist an ergodic C 2 -diffeomorphism whose derivative has polynomial growth with degree β.

Minimal number of periodic points for smooth self-maps of S³

Grzegorz Graff, Jerzy Jezierski (2009)

Fundamenta Mathematicae

Let f be a continuous self-map of a smooth compact connected and simply-connected manifold of dimension m ≥ 3 and r a fixed natural number. A topological invariant D r m [ f ] , introduced by the authors [Forum Math. 21 (2009)], is equal to the minimal number of r-periodic points for all smooth maps homotopic to f. In this paper we calculate D ³ r [ f ] for all self-maps of S³.

Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers

Grzegorz Graff, Agnieszka Kaczkowska (2012)

Open Mathematics

Let f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math. (in press)] the topological invariant J[f] which is equal to the...

On diffeomorphisms with polynomial growth of the derivative on surfaces

Krzysztof Frączek (2004)

Colloquium Mathematicae

We consider zero entropy C -diffeomorphisms on compact connected C -manifolds. We introduce the notion of polynomial growth of the derivative for such diffeomorphisms, and study it for diffeomorphisms which additionally preserve a smooth measure. We show that if a manifold M admits an ergodic diffeomorphism with polynomial growth of the derivative then there exists a smooth flow with no fixed point on M. Moreover, if dim M = 2, then necessarily M = ² and the diffeomorphism is C -conjugate to a skew...

On solutions of functional equations determining subsemigroups of L¹₄

Janina Chodukowska, Zbigniew Marciniak (2010)

Colloquium Mathematicae

Let L¹₄ be the group of 4-jets at zero of diffeomorphisms f of ℝ with f(0) = 0. Identifying jets with sequences of derivatives, we determine all subsemigroups of L¹₄ consisting of quadruples (x₁,f(x₁,x₄),g(x₁,x₄),x₄) ∈ (ℝ∖{0}) × ℝ³ with continuous functions f,g:(ℝ∖{0}) × ℝ → ℝ. This amounts to solving a set of functional equations.

On the group of real analytic diffeomorphisms

Takashi Tsuboi (2009)

Annales scientifiques de l'École Normale Supérieure

The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the n -dimensional torus, its identity component is a simple group. For U ( 1 ) fibered manifolds, for manifolds admitting special semi-free U ( 1 ) actions and for 2- or 3-dimensional manifolds with nontrivial U ( 1 ) actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.

Partial hyperbolicity and homoclinic tangencies

Sylvain Crovisier, Martin Sambarino, Dawei Yang (2015)

Journal of the European Mathematical Society

We show that any diffeomorphism of a compact manifold can be C 1 approximated by diffeomorphisms exhibiting a homoclinic tangency or by diffeomorphisms having a partial hyperbolic structure.

Periodic orbits and chain-transitive sets of C1-diffeomorphisms

Sylvain Crovisier (2006)

Publications Mathématiques de l'IHÉS

We prove that the chain-transitive sets of C1-generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a C1-perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C1-generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology...

Persistence of fixed points under rigid perturbations of maps

Salvador Addas-Zanata, Pedro A. S. Salomão (2014)

Fundamenta Mathematicae

Let f: S¹ × [0,1] → S¹ × [0,1] be a real-analytic diffeomorphism which is homotopic to the identity map and preserves an area form. Assume that for some lift f̃: ℝ × [0,1] → ℝ × [0,1] we have Fix(f̃) = ℝ × 0 and that f̃ positively translates points in ℝ × 1. Let f ̃ ϵ be the perturbation of f̃ by the rigid horizontal translation (x,y) ↦ (x+ϵ,y). We show that F i x ( f ̃ ϵ ) = for all ϵ > 0 sufficiently small. The proof follows from Kerékjártó’s construction of Brouwer lines for orientation preserving homeomorphisms...

Porcupine-like horseshoes: Transitivity, Lyapunov spectrum, and phase transitions

Lorenzo J. Díaz, Katrin Gelfert (2012)

Fundamenta Mathematicae

We study a partially hyperbolic and topologically transitive local diffeomorphism F that is a skew-product over a horseshoe map. This system is derived from a homoclinic class and contains infinitely many hyperbolic periodic points of different indices and hence is not hyperbolic. The associated transitive invariant set Λ possesses a very rich fiber structure, it contains uncountably many trivial and uncountably many non-trivial fibers. Moreover, the spectrum of the central Lyapunov exponents of...

Projectively Anosov flows with differentiable (un)stable foliations

Takeo Noda (2000)

Annales de l'institut Fourier

We consider projectively Anosov flows with differentiable stable and unstable foliations. We characterize the flows on T 2 which can be extended on a neighbourhood of T 2 into a projectively Anosov flow so that T 2 is a compact leaf of the stable foliation. Furthermore, to realize this extension on an arbitrary closed 3-manifold, the topology of this manifold plays an essential role. Thus, we give the classification of projectively Anosov flows on T 3 . In this case, the only flows on T 2 which extend to T 3 ...

Results and open questions on some invariants measuring the dynamical complexity of a map

Jaume Llibre, Radu Saghin (2009)

Fundamenta Mathematicae

Let f be a continuous map on a compact connected Riemannian manifold M. There are several ways to measure the dynamical complexity of f and we discuss some of them. This survey contains some results and open questions about relationships between the topological entropy of f, the volume growth of f, the rate of growth of periodic points of f, some invariants related to exterior powers of the derivative of f, and several invariants measuring the topological complexity of f: the degree (for the case...

Symbolic extensions for nonuniformly entropy expanding maps

David Burguet (2010)

Colloquium Mathematicae

A nonuniformly entropy expanding map is any ¹ map defined on a compact manifold whose ergodic measures with positive entropy have only nonnegative Lyapunov exponents. We prove that a r nonuniformly entropy expanding map T with r > 1 has a symbolic extension and we give an explicit upper bound of the symbolic extension entropy in terms of the positive Lyapunov exponents by following the approach of T. Downarowicz and A. Maass [Invent. Math. 176 (2009)].

Symbolic extensions in intermediate smoothness on surfaces

David Burguet (2012)

Annales scientifiques de l'École Normale Supérieure

We prove that 𝒞 r maps with r > 1 on a compact surface have symbolic extensions, i.e., topological extensions which are subshifts over a finite alphabet. More precisely we give a sharp upper bound on the so-called symbolic extension entropy, which is the infimum of the topological entropies of all the symbolic extensions. This answers positively a conjecture of S. Newhouse and T. Downarowicz in dimension two and improves a previous result of the author [11].

The C 1 generic diffeomorphism has trivial centralizer

Christian Bonatti, Sylvain Crovisier, Amie Wilkinson (2009)

Publications Mathématiques de l'IHÉS

Answering a question of Smale, we prove that the space of C 1 diffeomorphisms of a compact manifold contains a residual subset of diffeomorphisms whose centralizers are trivial.

Currently displaying 21 – 40 of 43