Displaying 141 – 160 of 163

Showing per page

Trajectories of polynomial vector fields and ascending chains of polynomial ideals

Dmitri Novikov, Sergei Yakovenko (1999)

Annales de l'institut Fourier

We give an explicit upper bound for the number of isolated intersections between an integral curve of a polynomial vector field in n and an algebraic hypersurface. The answer is polynomial in the height (the magnitude of coefficients) of the equation and the size of the curve in the space-time, with the exponent depending only on the degree and the dimension.The problem turns out to be closely related to finding an explicit upper bound for the length of ascending chains of polynomial ideals spanned...

Transitive flows on manifolds.

Víctor Jiménez López, Gabriel Soler López (2004)

Revista Matemática Iberoamericana

In this paper we characterize manifolds (topological or smooth, compact or not, with or without boundary) which admit flows having a dense orbit (such manifolds and flows are called transitive) thus fully answering some questions by Smith and Thomas. Name

Une classe de systèmes dynamiques monotones génériquement Morse-Smale

Maxime Percie du Sert (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article, nous généralisons les résultats de Fusco et Oliva [8], qui ont montré la transversalité de l’intersection des variétés stable et instable associées à des orbites périodiques hyperboliques, pour un système dynamique de la forme x ˙ = f ( x ) (sur un ouvert de n ) où f ' ( x ) est une matrice de Jacobi cyclique. Dans [8], cette propriété est obtenue en utilisant le nombre de changements de signe de x ˙ ( t ) qui est une fonctionnelle monotone le long des orbites. Tout d’abord, nous étendons ce résultat de transversalité...

Which electric fields are realizable in conducting materials?

Marc Briane, Graeme W. Milton, Andrejs Treibergs (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study the realizability of a given smooth periodic gradient field ∇u defined in Rd, in the sense of finding when one can obtain a matrix conductivity σ such that σ∇u is a divergence free current field. The construction is shown to be always possible locally in Rd provided that ∇u is non-vanishing. This condition is also necessary in dimension two but not in dimension three. In fact the realizability may fail for non-regular gradient fields, and in general the conductivity cannot...

Currently displaying 141 – 160 of 163