Page 1

Displaying 1 – 3 of 3

Showing per page

Une version feuilletée équivariante du théorème de translation de Brouwer

Patrice Le Calvez (2005)

Publications Mathématiques de l'IHÉS

The Brouwer’s plane translation theorem asserts that for a fixed point free orientation preserving homeomorphism f of the plane, every point belongs to a Brouwer line: a proper topological embedding C of R, disjoint from its image and separating f(C) and f–1(C). Suppose that f commutes with the elements of a discrete group G of orientation preserving homeomorphisms acting freely and properly on the plane. We will construct a G-invariant topological foliation of the plane by Brouwer lines. We apply...

Uniformization of the leaves of a rational vector field

Alberto Candel, X. Gómez-Mont (1995)

Annales de l'institut Fourier

We study the analytic structure of the leaves of a holomorphic foliation by curves on a compact complex manifold. We show that if every leaf is a hyperbolic surface then they can be simultaneously uniformized in a continuous manner. In case the manifold is complex projective space a sufficient condition is that there are no algebraic leaf.

Currently displaying 1 – 3 of 3

Page 1